Linear-Depth Quantum Circuits for n-qubit Toffoli gates with no Ancilla
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This paper presents a quantum circuit design with linear depth to implement an n-qubit Toffoli

gate.

The proposed design, which uses no ancilla qubit, is a quadratic-size circuit comprising

elementary 2-qubit controlled-rotation gates around the x axis. The circuit depth remains linear
even in quantum circuit architectures with only adjacent neighbor interactions among the qubits.
This design is related to the long-standing construction by Barenco et al. (Phys. Rev. A, 52: 3457-
3467, 1995), which uses a quadratic-size, quadratic-depth quantum circuit for an n-qubit Toffoli

gate.

PACS numbers: 03.67.Lx, 07.05.Bx, 89.20.Ff

I. INTRODUCTION

Efficient implementation of multi-qubit quantum gates
is critical in the quest for building a scalable quantum
computing system . In particular, the n-qubit Toffoli
gate plays a key role in realizing many of the archety-
pal quantum algorithms. Example uses of this gate in-
clude circuits compiled for modular multiplication and
exponentiation in Shor’s number-factoring algorithm [1-
3] and quantum error correction codes [4]. For n = 3, the
entangling Toffoli gate, which flips the ‘target’ state con-
ditioned on its two ‘controls’, by itself forms a universal
gate set for reversible Boolean logic, see [5]. Addition-
ally, the 3-qubit Toffoli gate with an additional appropri-
ate single-qubit gate constitute a universal gate set for
quantum computing [6]. In the recent years, several pro-
tocols have been proposed to realize the 3-qubit Toffoli
gate and its variants in different physical quantum tech-
nologies, e.g., with superconducting qubits [7, 8], trapped
ions [9, 10], optical elements [11, 12], and cavity quantum
electrodynamics [13].

A common approach for implementing a highly condi-
tional gate is to apply decomposition, which breakdowns
the gate into ‘elementary’ gates with at most one control
signal [14-16]. For an n-qubit Tofloli gate, this path re-
sults in quadratic-size, quadratic-depth quantum circuits
with no ancilla [17, Corollary 7.6]. For the 3-qubit Tof-
foli gate, the simplest known decomposition requires five
2-qubit gates [17, Lemma 6.1], or exactly six CNOTs [1§]
and several one-qubit gates. To avoid applying a long,
at least quadratic-length sequence of single- and 2-qubit
gates, several methods have been proposed to directly re-
alize multi-qubit gates with trapped ions [19, 20], neutral
atoms [21], or superconducting qubits [22].

To streamline the realization of Toffoli gates condi-
tioned on many qubits, which can speed-up the progress
towards scalable quantum computation, both theoretical
and experimental attempts are needed. In this paper,
we present a theoretical approach to decompose n-qubit
Toffoli gates into 2-qubit gates in quadratic size, but lin-
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ear depth, without using any ancilla qubits. For this
purpose, we change the usual computational basis states
|0) and |1) and propose a design that exploits quantum
rotation gates conditioned on one qubit. The proposed
design is related to the synthesis framework suggested in
[23, 24]. In this manuscript, we focus on quantum algo-
rithms implemented without quantum error correction,
which is useful for short-term physical experimentation
with quantum circuit elements.

The rest of this paper is organized as follows. The pro-
posed circuit structure is introduced in Section II. The
resulting circuit depth is analyzed in Section III for quan-
tum computing systems with arbitrary-length and finite-
length interaction distance between qubits. We compare
the proposed design with prior constructions in Section
IV. Section V concludes the paper with further discus-
sion.

II. CIRCUIT STRUCTURE

The choice of basis states in quantum computing is not
unique and any two orthogonal unit vectors can be used
in a 2-particle quantum computing system to serve as the
computational basis states. Working with rotation gates
R, () around the x axis, we keep 0 = |0), but change the
other vector to 1 = R, (m)|0) = [0 —i ]T. Accordingly,
R, () works as a NOT gate, which transforms 0 to 1 and
vice versa. Adding one and two conditionals for R, ()
constructs analogous versions of the conventional 2-qubit
CNOT and 3-qubit Toffoli gates. Accordingly, an n-qubit
Toffoli gate is a w-rotation gate around the x axis with
n — 1 conditionals. Note that, in circuit diagrams shown
throughout the paper, k consecutive gates with the same
control lines are depicted as a single gate with one control
and k targets.

Figure 1 shows a possible decomposition of a 3-qubit
Toffoli gate. In this figure, if at least one of the first
two qubits is 0, then the circuit applies either an iden-
tity I gate or R.(5 — 5) = I gate to the target qubit.
Otherwise, R, (5 + 5) is applied, which is a NOT gate.

Theorem 1. An n-qubit Toffoli gate with controls
ai,as, -+ ,a,—1 and target a, can be implemented by



Figure 1. The 3-qubit Toffoli gate and its decomposition into
2-qubit controlled-rotation gates. Two consecutive gates with
controls on a are depicted as a single gate with one control
and two targets on b and c.

a network of the form given in Figure 2 where all gates
are conditional f-rotation gates around the x axis.

Proof. To prove, we restructure the circuit shown in
Figure 2 as illustrated in Figure 3. To verify, note that
gates in the first (top) n — 1 lines construct an (n — 1)-
qubit Toffoli gate, gates in the first n — 2 lines construct
an (n—2)-qubit Toffoli gate, - - -, gates in the first 3 qubit
constructs a 3-qubit Toffoli, and finally gate in the first 2
qubits is a CNOT. We ignore conditional rotation gates
with § = —7 in Figure 3 since these gates are applied to
restore values of control qubits.

Consider the subcircuit A shown in Figure 3. Focusing
on A, assume A input qubits are a; and A output qubits
are b; for 1 <1i <n—1. Assume that ay is the first qubit
(starting from k = 1) with value 0. After applying A,
we have by = a1, b; =0for 2 <i < k-1, by =1, and
b =a; for k+1<i<n.

Now, consider the complete circuit in Figure 3. The
case a; = 0 is trivial because gates in A are disabled,
the gate with control qubit a; and target qubit a, is
deactivated, whereas other applied gates cancel out each
other. Therefore, we assume a; = 1. Note that before
applying A, each controlled-rotation gate with control
qubit a; for 2 < i < n — 1 applies 7/2"~¢ to qubit a,.
Similarly, after applying A, each controlled-rotation gate
with control qubit a; for 2 < i < n — 1 applies —7/2" !
to qubit a,.

If a (starting from k = 1) is the first qubit with
value 0, then conditional rotation gates with controls
ai,as, -+ ,ap_1 are activated and a 6;-rotation gate with
th = sist3n—= T 5n=s+ "+ 5a—r77 is applied to the tar-
get qubit. However, after applying A a fs-rotation gate
with 0 = 5775 is applied, which removes the effect of
0, given 6; = —0y. Additionally, each gate with control
qubit a; for k+ 1 <i < n —1 after A removes the effect
of its corresponding gate before A. Finally, if a; = 1 for
all 1 <1i < n-—1, then all gates before A are enabled and
all gates after A are disabled and a #-rotation gate with
0= 57 + s5n== + 5=z + -+ + 5z + 5 = 7 is applied to
the target qubit a,,. O

Figure 4 and Figure 5(a) show the proposed design
for 4-qubit and 5-qubit Toffoli gates. In Figure 5(b), the
construction used in the proof of Theorem 1 is illustrated
for a 5-qubit Toffoli gate. To count the number of 2-
qubit gates in the proposed design, note that there are
2%=""2j + n — 1 gates to construct the transformation

on the target line, and 2X/=77% +n — 2 gates to restore

control lines to their original values. Therefore, the total
number of 2-qubit gates in the proposed design is 2n? —
6n + 5 or 2n? + O(n).

III. DEPTH ANALYSIS

In this section, we show that in spite of the quadratic
size of the proposed structure for an n-qubit Toffoli gate
(no ancilla), the circuit depth is linear in n. To do the
depth analysis, we restructure the construction shown
in Figure 2. In particular, we change the structure to
have gates with common targets (vs. common controls
in Figure 2) in sequence. Additionally, we divide the
circuit in Figure 2 into 6 parts, namely C1,Co, -+ ,Cq as
shown in the figure. To calculate the circuit depth, we
focus on C;. The result can be extended to the whole
circuit. Figure 6 illustrates C; in Figure 5(a) with time
steps for each gate.

Theorem 2. The proposed design of an n-qubit Toffoli
gate can be realized by a linear-depth circuit.

Proof. Restructuring the circuit structure in Figure 2
to have gates with common targets in sequence, one can
verify that in C;+Cs there are n — 1 gates with targets
on qubit n, n — 2 gates with targets on qubit n — 1,
-+, one gate with target on qubit 2. Assign time steps
1,2,---,n—1ton— 1 gates with targets on qubit n.
Next, consider the n—2 gates with targets on qubit n—1.
Among these gates, n—3 gates can be executed in parallel
with the gates with targets on qubit n. Precisely, gates
with targets on qubit n —2 can be executed in time steps
3,4,--- ,n—1,n. Similarly, the next n — 4 gates can be
executed in time steps 5,6, - - - ,n+1. This analysis shows
that 2n — 3 time steps are needed for C;+Cs. Likewise,
Cs can be parallelized to depth 2n — 5, C4 4+ C5 can be
parallelized to depth 2n — 5, and Cg can be parallelized
to depth 2n — 7. Altogether, circuit depth for an n-qubit
Toffoli gate in the proposed design is 8n — 20. O

While the circuit depth of the proposed design is lin-
ear, our design of n-qubit Toffoli gate includes many long-
distance 2-qubit gates. In general, restricting interactions
to only nearest neighbor interactions can result in O(n)
overhead. Indeed, the circuit depth for the proposed de-
sign for an n-qubit Toffoli gate remains linear in n even
in quantum circuit architectures nearest neighbor inter-
actions as shown below. Obviously, one can realize the n-
qubit Toffoli gate on quantum circuit architectures with
other finite-distance interactions (e.g., qubit distance of
k > 1) at the same or even lower logic depth.

Assume a SWAP gate between qubits a; and as is rep-
resented by S(ai,as). We use the term ‘local’ for gates
that use neighboring qubits in a given architecture.

Theorem 3. Circuit depth for an n-qubit Toffoli gate
realized by the proposed design remains linear even in
quantum circuit architectures with nearest neighbor in-
teractions among qubits.
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Figure 2. Circuit structure for an n-qubit Toffoli gate. The proposed design is divided into six parts C1,Ca2, - ,Cs
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Figure 4. Circuit structure for a 4-qubit Toffoli gate. The last
three gates are applied to restore values of control lines.

Proof.We consider quantum circuit architectures with
adjacent neighbor interactions only. Working with C; +
Cy, consider a chain of n — 1 consecutive SWAP gates
S(an,an-1), S(an_1,an-2), S(an-2,an-3), -, S(az,ay)
in a sequence. For an initial qubit ordering of 1,2,--- | n,
the resulting qubit order will be n,1,2,--- ,n — 1 (sim-
ilar to the effect of a 1-bit rotation on the ordered se-
quence of qubits). Immediately after each SWAP gate,
one can apply a local controlled-rotation gate with tar-
get on qubit n. Now, apply a chain of n — 2 consecutive
SWAP gates S(an,an-1), S(an—1,an-2), S(an_2,an_3),
.-+, S(as,a2) in sequence. Among these n—2 gates, n—3

, (n — 1)-qubit Toffoli gates to construct an n-qubit Toffoli gate.

gates can be executed in parallel with the previous gates.
After the second SWAP chain, the resulting qubit order-
ingisn,n—1,1,2,--- ;n— 2. Accordingly, we can apply
n—2 local controlled-rotation gates with targets on n—1.
Proceeding in this manner, we incur 2n — 3 time steps
for SWAP gates, and 2n — 3 time steps for controlled-
rotation gates, 4n — 6 2-qubit time steps in total. The
circuit size is increased by 2n — 3 for SWAPs. The final
qubit ordering is n,n —1,n —2,--- 2, 1.

To construct a local circuit for Cs starting from qubit
ordering n,n — 1,n —2,--- 2,1, we can apply the same
structure discussed, which leads to depth 4n — 10 for Cs.
The resulting qubit ordering is 2,3,--- ,n — 1,n,1. At
this time, applying the next C4 + Cs circuit is tricky be-
cause qubit ordering has been changed from the initial
one 1,2,--- ,n—1,n. Actually, the first qubit is far from
other qubits 2,3, ---. Thus, we apply a linear-depth cir-
cuit with depth n + 5, and size 4n — 6 [25, Theorem 4.1]
to restore the ordering 1,2,--- ,n — 1,n. Accordingly,
C4+Cs, and Cg can be implemented in depth 4n — 10 and
4n — 14, respectively. We recover the final qubit order-
ing to the initial ordering 1,2,--- ,n — 1,n with another
linear-depth circuit.



Figure 5. Circuit structure for a 5-qubit Toffoli gate. Circuit
in (a) is the proposed structure. This circuit is restructured in
(b) based on the circuits in Figure 1 and Figure 4. Note that
direct decomposition of the gates in (b) does not result in the
proposed construction in (a) — such decomposition results
in many redundant gates. In other words, the construction
in (a) reuses gates of a k-qubit Toffoli gate to construct a
(k + 1)-qubit Toffoli gate.
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Figure 6. A part of the circuit shown in Figure 5(a) restruc-
tured to show parallel sub-circuits. Numbers denote time slots
in which gates can be executed.

Altogether, the circuit depth for an n-qubit Toffoli gate
with only adjacent qubit interactions is 18n —31. Circuit
size remains 2n2 + O(n). O

In summary, circuit depth in the proposed structure is
only increased by a constant factor, e.g., 2.25 in quantum
circuit architectures with adjacent neighbor interactions
only. Figure 7 illustrates the circuit in Figure 6 with only
local gates.

IV. COMPARISON WITH PRIOR ART

The current widely-used decomposition [17, Corollary
7.6] for an n-qubit Toffoli gate uses a quadratic-size con-
struction with a staircase structure where the target of
gate ¢ depends on a control of gate ¢ — 1. This results in
quadratic circuit depth. The decomposition is illustrated
in Figure 8. In this figure, U is a NOT gate which results
in V and VT where V2 = U. The resulting multiple-
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Figure 7. Circuit in Figure 6 with only local gates based on
the proof of Theorem 3. Numbers are time slots that gates
can be executed.
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Figure 8. Circuit structure for an n-qubit Toffoli gate in [17,
Lemma 7.5] where V2 = U. At the first step, U is a NOT
gate. The resulting multiple-control Toffoli gates have linear
cost due to the availability of one ancilla qubit. The last
gate can be decomposed by recursively applying the current
decomposition.

control Toffoli gates have linear cost 48n + O(1) in [17]
due to the availability of one ancilla qubit. The last gate
can be decomposed by recursively applying the decom-
position shown in Figure 8 using U = vNOT. Follow-
ing this path results in controlled-ith-root-of-NOT gates
for ¢ = 2',22,... 2771, The circuit size and depth are
48n2 + O(n) 2-qubit gates.

The optimizations in [26] improve the linear-cost im-
plementation of a multiple-control Toffoli gates with one
ancilla from 48n+ O(1) to 24n+ O(1). The circuit depth
remains quadratic, precisely 24n2 + O(n). The method
in [23, 24, Section 6] benefits from a recursive construc-
tion with quadratic-depth 2n? + O(n). As discussed in
Section II and Section III, our circuit size and circuit
depth are quadratic and linear, respectively. All meth-
ods uses gates with similar complexity levels for physical
realization.

In Theorem 1 we assumed no ancilla qubit is available
to facilitate circuit construction. If at least one ancilla
exists, prior circuit structures in [17, Lemma 7.2] and [17,
Lemma 7.3|, and its improved versions [26], use linear-
size circuits. When 1 and n — 3 ancillae are available, we
can apply the same circuit structures in [17, Lemma 7.2]
and [17, Lemma 7.3]. Precisely, after applying various



optimizations in [26], we can construct circuits with sizes
24n — 88, and 12n — 34 if one and n — 3 ancillae are avail-
able — note that Peres gate has cost 4 in the proposed
construction as in [26]. Applying optimizations in [26] to
the proposed circuit structure is straightforward.

V. CONCLUSION AND DISCUSSION

We presented a linear-depth quadratic-size quantum
circuit with controlled-rotation gates around the z axis
with no ancilla qubit to implement an n-qubit Toffoli
gate. Restricting qubit interactions in any finite length
(including a distance of one only) affects the circuit depth
and size by a constant factor.

The physical implementations of quantum gates are
imperfect due to various reasons including decoherence
and error in experimental setups. In the proposed circuit
structure, we used f-rotation gates around the x axis for
0 = g5 and 1 < k < n — 2. Obviously, 7= can be very
small for large n values, which makes its physical imple-
mentation complicated. Small rotation angles may be
ignored in specific applications, as done for approximate
quantum Fourier transform [27]. In particular, restrict-
ing k < [logy n] results in e =~ T error.

For a scalable quantum physical implementation,
quantum error correction should be applied. In this case,
f-rotation gates should be decomposed into several fault-
tolerant gates [4] where decomposition of rotation gates
with small angles is complex and costly. The proposed

approach is more interesting for near-term physical ex-
periments where small quantum algorithms will be im-
plemented without error correction.

Since conditional Toffoli gates are key building blocks
for many quantum algorithms, in-depth characterization
of their operations and imperfections possibly based on
quantum tomography [28] can be very useful. Recently, a
multi-qubit phase gate with one control qubit simultane-
ously controlling n target qubits was implemented using
superconducting qubits [29]. Since we extensively bene-
fit from such gates in the proposed design of the n-qubit
Toffoli gate, applying the method in [29] to physically re-
alize conditional Toffoli gates based on the method pre-
sented in this paper, e.g. the small circuit in Figure 4, is
promising.

Finally, while we use 0 and 1 for computational basis
states, we can also use |0) and |1). To achieve this, one
can transform |0),[1) to 0,1 by applying n single-qubit
gates with the same matrix M to all qubits. This should
be followed by the proposed construction. Final quantum
state can be restored from 0, 1 to |0) , |1) by applying M.

(s e =[5 0]

Restricting to have only one type of 2-qubit gate can
increase the circuit depth/size by a constant factor given
that each 2-qubit gate can be implemented by a constant-
size circuit [17].
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